122 research outputs found

    ALCAM Regulates Motility, Invasiveness, and Adherens Junction Formation in Uveal Melanoma Cells

    Get PDF
    ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM’s role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates

    Imagable 4T1 model for the study of late stage breast cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The 4T1 mouse mammary tumor cell line is one of only a few breast cancer models with the capacity to metastasize efficiently to sites affected in human breast cancer. Here we describe two 4T1 cell lines modified to facilitate analysis of tumor growth and metastasis and evaluation of gene function <it>in vivo</it>. New information regarding the involvement of innate and acquired immunity in metastasis and other characteristics of the model relevant to its use in the study of late stage breast cancer are reported.</p> <p>Methods</p> <p>The lines were engineered for stable expression of firefly luciferase to allow tracking and quantitation of the cells <it>in vivo</it>. Biophotonic imaging was used to characterize growth and metastasis of the lines <it>in vivo </it>and an improved gene expression approach was used to characterize the basis for the metastatic phenotype that was observed.</p> <p>Results</p> <p>Growth of cells at the primary site was biphasic with metastasis detected during the second growth phase 5–6 weeks after introduction of the cells. Regression of growth, which occurred in weeks 3–4, was associated with extensive necrosis and infiltration of leukocytes. Biphasic tumor growth did not occur in BALB/c SCID mice indicating involvement of an acquired immune response in the effect. Hematopoiesis in spleen and liver and elevated levels of circulating leukocytes were observed at week 2 and increased progressively until death at week 6–8. Gene expression analysis revealed an association of several secreted factors including colony stimulatory factors, cytokines and chemokines, acute phase proteins, angiogenesis factors and ECM modifying proteins with the 4T1 metastatic phenotype. Signaling pathways likely to be responsible for production of these factors were also identified.</p> <p>Conclusion</p> <p>The production of factors that stimulate angiogenesis and ECM modification and induce hematopoiesis, recruitment and activation of leukocytes suggest that 4T1 tumor cells play a more direct role than previously appreciated in orchestrating changes in the tumor environment conducive to tumor cell dissemination and metastasis. The new cell lines will greatly facilitate the study of late stage breast and preclinical assessment of cancer drugs and other therapeutics particularly those targeting immune system effects on tumor metastasis.</p

    Influence of monolayer, spheroid, and tumor growth conditions on chromosome 3 gene expression in tumorigenic epithelial ovarian cancer cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Expression microarray analyses of epithelial ovarian cancer (EOC) cell lines may be exploited to elucidate genetic and epigenetic events important in this disease. A possible variable is the influence of growth conditions on discerning candidates. The present study examined the influence of growth conditions on the expression of chromosome 3 genes in the tumorigenic EOC cell lines, OV-90, TOV-21G and TOV-112D using Affymetrix GeneChip<sup>® </sup>HG-U133A expression microarray analysis.</p> <p>Methods</p> <p>Chromosome 3 gene expression profiles (n = 1147 probe sets, representing 735 genes) were extracted from U133A expression microarray analyses of the EOC cell lines OV-90, TOV-21G and TOV-112D that were grown as monolayers, spheroids or nude mouse xenografts and monolayers derived from these tumors. Hierarchical cluster analysis was performed to compare chromosome 3 transcriptome patterns of each growth condition. Differentially expressed genes were identified and characterized by two-way comparative analyses of fold-differences in gene expression between monolayer cultures and each of the other growth conditions, and between the maximum and minimum values of expression of all growth conditions for each EOC cell line.</p> <p>Results</p> <p>An overall high degree of similarity (> 90%) in gene expression was observed when expression values of alternative growth conditions were compared within each EOC cell line group. Two-way comparative analysis of each EOC cell line grown in an alternative condition relative to the monolayer culture showed that overall less than 15% of probe sets exhibited at least a 3-fold difference in expression profile. Less than 23% of probe sets exhibited greater than 3-fold differences in gene expression in comparisons of the maximum and minimum value of expression of all growth conditions within each EOC cell line group. The majority of these differences were less than 5-fold. There were 17 genes in common which were differentially expressed in all EOC cell lines. However, the patterns of expression of these genes were not necessarily the same for each growth condition when one cell line was compared with another.</p> <p>Conclusion</p> <p>The various alternative <it>in vivo </it>and <it>in vitro </it>growth conditions of tumorigenic EOC cell lines appeared to modestly influence the global chromosome 3 transcriptome supporting the notion that the <it>in vitro </it>cell line models are a viable option for testing gene candidates.</p

    Molecular profiling of cervical cancer progression

    Get PDF
    Most cancer patients die of metastatic or recurrent disease, hence the importance to identify target genes upregulated in these lesions. Although a variety of gene signatures associated with metastasis or poor prognosis have been identified in various cancer types, it remains a critical problem to identify key genes as candidate therapeutic targets in metastatic or recurrent cancer. The aim of our study was to identify genes consistently upregulated in both lymph node micrometastases and recurrent tumours compared to matched primary tumours in human cervical cancer. Taqman Low-Density Arrays were used to analyse matched tumour samples, obtained after laser-capture microdissection of tumour cell islands for the expression of 96 genes known to be involved in tumour progression. Immunohistochemistry was performed for a panel of up- and downregulated genes. In lymph node micrometastases, most genes were downregulated or showed expressions equal to the levels found in primary tumours. In more than 50% of lymph node micrometastases studied, eight genes (AKT, BCL2, CSFR1, EGFR1, FGF1, MMP3, MMP9 and TGF-β) were upregulated at least two-fold. Some of these genes (AKT and MMP3) are key regulators of epithelial–mesenchymal transition in cancer. In recurrent tumours, almost all genes were upregulated when compared to the expression profiles of the matched primary tumours, possibly reflecting their aggressive biological behaviour. The two genes showing a consistent downregulated expression in almost all lymph node metastases and recurrent tumours were BAX and APC. As treatment strategies are very limited for metastatic and recurrent cervical cancer, the upregulated genes identified in this study are potential targets for new molecular treatment strategies in metastatic or recurrent cervical cancer

    Characterization of a caspase-3-substrate kinome using an N- and C-terminally tagged protein kinase library produced by a cell-free system

    Get PDF
    Caspase-3 (CASP3) cleaves many proteins including protein kinases (PKs). Understanding the relationship(s) between CASP3 and its PK substrates is necessary to delineate the apoptosis signaling cascades that are controlled by CASP3 activity. We report herein the characterization of a CASP3-substrate kinome using a simple cell-free system to synthesize a library that contained 304 PKs tagged at their N- and C-termini (NCtagged PKs) and a luminescence assay to report CASP3 cleavage events. Forty-three PKs, including 30 newly identified PKs, were found to be CASP3 substrates, and 28 cleavage sites in 23 PKs were determined. Interestingly, 16 out of the 23 PKs have cleavage sites within 60 residues of their N- or C-termini. Furthermore, 29 of the PKs were cleaved in apoptotic cells, including five that were cleaved near their termini in vitro. In total, approximately 14% of the PKs tested were CASP3 substrates, suggesting that CASP3 cleavage of PKs may be a signature event in apoptotic-signaling cascades. This proteolytic assay method would identify other protease substrates

    Launching a Novel Preclinical Infrastructure: Comparative Oncology Trials Consortium Directed Therapeutic Targeting of TNFα to Cancer Vasculature

    Get PDF
    Background: Under the direction and sponsorship of the National Cancer Institute, we report on the first pre-clinical trial of the Comparative Oncology Trials Consortium (COTC). The COTC is a novel infrastructure to integrate cancers that naturally develop in pet dogs into the development path of new human drugs. Trials are designed to address questions challenging in conventional preclinical models and early phase human trials. Large animal spontaneous cancer models can be a valuable addition to successful studies of cancer biology and novel therapeutic drug, imaging and device development. Methodology/Principal Findings: Through this established infrastructure, the first trial of the COTC (COTC001) evaluated a targeted AAV-phage vector delivering tumor necrosis factor (RGD-A-TNF) to αV integrins on tumor endothelium. Trial progress and data was reviewed contemporaneously using a web-enabled electronic reporting system developed for the consortium. Dose-escalation in cohorts of 3 dogs (n = 24) determined an optimal safe dose (5 x 1012 transducing units intravenous) of RGD-A-TNF. This demonstrated selective targeting of tumor-associated vasculature and sparing of normal tissues assessed via serial biopsy of both tumor and normal tissue. Repetitive dosing in a cohort of 14 dogs, at the defined optimal dose, was well tolerated and led to objective tumor regression in two dogs (14%), stable disease in six (43%), and disease progression in six (43%) via Response Evaluation Criteria in Solid Tumors (RECIST). Conclusions/Significance: The first study of the COTC has demonstrated the utility and efficiency of the established infrastructure to inform the development of new cancer drugs within large animal naturally occurring cancer models. The preclinical evaluation of RGD-A-TNF within this network provided valuable and necessary data to complete the design of first-in-man studies

    Expression profile of genes regulated by activity of the Na-H exchanger NHE1

    Get PDF
    BACKGROUND: In mammalian cells changes in intracellular pH (pH(i)), which are predominantly controlled by activity of plasma membrane ion exchangers, regulate a diverse range of normal and pathological cellular processes. How changes in pH(i )affect distinct cellular processes has primarily been determined by evaluating protein activities and we know little about how pH(i )regulates gene expression. RESULTS: A global profile of genes regulated in mammalian fibroblasts by decreased pH(i )induced by impaired activity of the plasma membrane Na-H exchanger NHE1 was characterized by using cDNA microarrays. Analysis of selected genes by quantitative RT-PCR, TaqMan, and immunoblot analyses confirmed results obtained from cDNA arrays. Consistent with established roles of pH(i )and NHE1 activity in cell proliferation and oncogenic transformation, grouping regulated genes into functional categories and biological pathways indicated a predominant number of genes with altered expression were associated with growth factor signaling, oncogenesis, and cell cycle progression. CONCLUSION: A comprehensive analysis of genes selectively regulated by pH(i )provides insight on candidate targets that might mediate established effects of pH(i )on a number of normal and pathological cell functions

    Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    Get PDF
    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology
    • …
    corecore